Problem 1: Chapter 12, #6abc

Problem 2: Chapter 12, #24

Problem 3: This problem provides another proof of Cauchy’s Theorem. Let G be a group and suppose that p is a prime which divides $|G|$. Let $X = \{(a_1, a_2, \ldots, a_{p-1}, a_p) \in G^p : a_1 a_2 \cdots a_{p-1} a_p = e\}$ i.e. X consists of all p-tuples of elements of G such that when you multiply them in the given order you get the identity.

a. Give four examples of elements of X in the special case when $G = S_3$ and $p = 3$.

b. Show that $|X| = |G|^{p-1}$.

c. Show that if $(a_1, a_2, \ldots, a_{p-1}, a_p) \in X$, then $(a_2, a_3, \ldots, a_p, a_1) \in X$. It follows that any cyclic shift of an element of X remains in X.

Let H be the subgroup of S_p generated by the element $(12\ldots p)$, so $|H| = p$. Let H act on X by permuting the elements, i.e. if $\sigma \in H$ and $(a_1, a_2, \ldots, a_{p-1}, a_p) \in X$, then

$$\sigma \ast (a_1, a_2, \ldots, a_{p-1}, a_p) = (a_{\sigma(1)}, a_{\sigma(2)}, \ldots, a_{\sigma(p-1)}, a_{\sigma(p)})$$

In other words, $(12\ldots p)$ shifts an element in X to the left one (as in part b), $(12\ldots p)^2$ shifts to the left 2, etc.

d. Show that this is indeed an action of H on X.

e. Notice that $(e, e, \ldots, e, e) \in X_H$. Show that X_H has at least one other element. Hint: Use Problem 2.

f. Conclude that G has an element of order p.