A Category of Topological Spaces Encoding Acyclic Set-Theoretic Dynamics

(and other Collatz fun)

Ken Monks

University of Scranton

1 History: How I got interested

• 1991: Faculty Student Research Program (FSRP) formed at Scranton.

2 Undergraduate Papers

- C. Farruggia, M. Lawrence, B. Waterhouse; The Elimination of a Family of Periodic Parity Vectors in the 3x+1 Problem, Pi Mu Epsilon Journal, 10 (4), Spring (1996), 275-280
- Fusaro, Marc, A Visual Representation of Sequence Space, Pi Mu Epsilon Journal, Pi Mu Epsilon Journal 10 (6), Spring 1997, 466-481
- Joseph, J.; A Chaotic Extension of the 3x + 1 Function to $\mathbb{Z}_2[i]$, Fibonacci Quarterly, 36.4 (Aug 1998), 309-316
- Fraboni, M.; *Conjugacy and the* 3x+1 *Conjecture,* submitted

3 Cast of Characters

- ullet \mathbb{Z}_2 -the ring of 2-adic integers
- ullet \mathbb{Q}_{odd} -the "oddrats"; $\left\{ rac{a}{b}:a,b\in\mathbb{Z}$, b odd $ight\}$
- T -the Collatz function

$$T(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ \frac{3x+1}{2} & \text{if } x \text{ is odd} \end{cases}$$

- $T: \mathbb{Z}_2 \to \mathbb{Z}_2$. Consider $T|\mathbb{Q}_{odd}, T|\mathbb{Z}$, and $T|\mathbb{Z}^+$ when needed.
- σ -the shift map on \mathbb{Z}_2 ,

$$\sigma\left(s_0s_1s_2\ldots_{(2)}\right)=s_1s_2s_3\ldots_{(2)}$$

ullet Q - the parity vector function

4 J. Joseph

- In search of the "Collatz fractal"!
- Extension to $\mathbb{Z}_2[i]$
- Even and odd correspond to equivalence classes in $\mathbb{Z}/2\mathbb{Z}$.
- $\mathbb{Z}_2[i]/2\mathbb{Z}_2[i] = \{[0], [1], [i], [1+i]\}$

Definition: Let

$$\widetilde{T}: \mathbb{Z}_2[i] \to \mathbb{Z}_2[i]$$

by

$$\widetilde{T}\left(x
ight) = \left\{ egin{array}{ll} rac{x}{2} & ext{if } x \in [0] \\ rac{3x+1}{2} & ext{if } x \in [1] \\ rac{3x+i}{2} & ext{if } x \in [i] \\ rac{3x+1+i}{2} & ext{if } x \in [1+i] \end{array}
ight.$$

4.1 A Nontrivial Matter?

Theorem (J. Joseph)

- (a) $\widetilde{T}|\mathbb{Z}_2 = T$. (i.e. it is an extension)
- (b) \widetilde{T} is not conjugate to $T \times T$ via a \mathbb{Z}_2 -module isomorphism. (i.e. it is nontrivial)
- (c) \widetilde{T} is topologically conjugate to $T \times T$.
- (d) \widetilde{Q} is a homeomorphism.
- (e) $\widetilde{T}: \mathbb{Z}_2[i] \to \mathbb{Z}_2[i]$ is chaotic.

4.2 Some Empirical Results on $\widetilde{T}|\mathbb{Z}\left[i\right]$

(An Extended Finite Cycles Conjecture?)

Period	$\#$ of $T \mathbb{Z}$ cycles	$ig \ \# \ of \ \widetilde{T} \mathbb{Z} \left[i ight] \ cycles \ igg $
1	2	4
2	1	3
3	1	9
4	0	0
5	0	2
6	0	0
7	0	0
8	0	10
11	1	5*
19	0	24*
46	0	2*
103	0	2*

^{*}Empirical search only.

5 The "Collatz Fractal"

- ullet Wanted: a continuous (preferably entire) function that interpolates $T|\mathbb{Q}_{odd}$ or $\widetilde{T}|\mathbb{Q}_{odd}$ [i]
- No way!
- M. Chamberland:

$$f(x) = \frac{x}{2}\cos^2\left(\frac{\pi}{2}x\right) + \frac{3x+1}{2}\sin^2\left(\frac{\pi}{2}x\right)$$

is entire and extends $T|\mathbb{Z}$.

5.1 An analytic extension of $\widetilde{T}|\mathbb{Z}[i]$

Definition: Let $\{a_0, a_1, a_2, \dots\} = \mathbb{Z}[i]$ be the enumeration of the points of $\mathbb{Z}[i]$ as shown:

Theorem (Joseph, Monks) Let $F:\mathbb{C}\to\mathbb{C}$ by

$$f_0\left(z
ight)=0, ext{ and for } n>0$$
 $f_n\left(z
ight)=\pi_n\left(z
ight)\left(rac{z}{a_n}
ight)^{m_n}\left(\widetilde{T}^n\left(a_n
ight)-\sum_{k=0}^{n-1}f_k\left(a_n
ight)
ight)\,,$
 $\pi_n\left(z
ight)=\prod_{k=1}^nrac{\left(z-a_k
ight)}{\left(a_n-a_k
ight)},$
 $p_n=\left\lfloorrac{\sqrt{n}+1}{2}
ight
floor,$
 $K_n=\leftert\widetilde{T}^n\left(a_n
ight)-\sum_{k=0}^{n-1}f_k\left(a_n
ight)
ightert,$
 $m_n=\left\lceil\log_2\left(\left(1+2\sqrt{2}
ight)^{n-1}p_n^{n-1}
ight)K_n
ight
ceil$
 $F\left(z
ight)=\sum_{n=0}^\infty f_n\left(z
ight).$

F is an entire function which extends $\widetilde{T}|\mathbb{Z}[i]$.

6 Starting from Scratch

Monks, K.; A Category of Topological Spaces Encoding Acyclic Set Theoretic Dynamics, in preparation

- Q: What are the categories of dynamical systems we are interested in? What are their properties?
- Q: What invariants can we find for such dynamical systems?
- Observation: The set theoretic dynamics of the Collatz map is independent of the choice of metric or topology on \mathbb{Z}_2 (or \mathbb{Q}_{odd} , or \mathbb{Z} or \mathbb{Z}^+).
- Q: In such a situation, is there a "canonical" topology that is associated with the dynamics?
 To what extent is it an invariant?

6.1 More members of our cast

Definition: A set theoretic discrete dynamical system is a pair, $\mathsf{Dyn}\,(X,f)$, where X is a set and $f:X\to X$ is a map.

The dynamical systems ${\rm Dyn}\,(X,f)\,,\,\,{\rm Dyn}\,(Y,g)$ are said to be semi-conjugate if there exists a map $h:X\to Y$ such that

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & X \\ h \downarrow & & \downarrow h \\ Y & \stackrel{g}{\longrightarrow} & Y \end{array}$$

commutes.

In this situation h is called a *semiconjugacy*.

If h is bijective, then h is a conjugacy.

If X, Y are topological spaces and h is a homeomorphism, then h is a topological conjugacy.

Definition: A dynamical system is *acyclic* if its only cyclic points are fixed points.

• The f-orbit of x is

$$\mathcal{O}_{f}\left(x\right)=\left\{ x,f\left(x\right),f^{2}\left(x\right),\ldots\right\}$$

6.2 Categories of Dynamical Systems

- SetDyn
 - objects: set theoretic discrete dynamical systems
 - morphisms: semiconjugacies
- ADyn
 - objects: acyclic dynamical systems
 - a full subcategory of SetDyn

6.2.1 Properties of SetDyn and ADyn

Theorem: In both SetDyn and ADyn:

- (a) Conjugacies are isomorphisms.
- (b) Semiconjugacies map cyclic points of order k to cyclic points of order d for some d dividing k.
- (c) Semiconjugacies map orbits to orbits, i.e. if h is a semiconjugacy from $\mathrm{Dyn}\left(X,f\right)$ to $\mathrm{Dyn}\left(Y,g\right)$ and $x\in X$ then $h\left(\mathcal{O}_{f}\left(x\right)\right)=\mathcal{O}_{g}\left(h\left(x\right)\right).$
- (d) Every monic morphism is injective.
- (e) Every epic morphism is surjective.
- (f) There exist injections which are not sections.
- (g) There exist surjections which are not retractions.
- (h) Every bimorphism is an isomorphism.
- (i) Dyn (\emptyset, \emptyset) is an initial object.
- (j) Dyn $\left(\left\{\emptyset\right\},id_{\left\{\emptyset\right\}}\right)$ is a terminal object
- (k) Both categories have arbitrary products and coproducts.
- (I) Both categories have equalisers.

6.3 Induced Topologies

Definition: Let X be a set and $f:X\to X$ a function. Define

$$\tau_f = \{ A \subseteq X : f(A) \subseteq A \}.$$

 au_f is a topology on X called the topology induced by f.

We say $\operatorname{Top}(X, \tau)$ is an *induced topological space* if $\tau = \tau_f$ for some map f.

If f is acyclic we say $\operatorname{Top}\left(X, \tau_f\right)$ is an acyclic topological space.

Theorem: The set of orbits forms a basis for the topology τ_f .

Corollary:
$$\mathcal{O}_f(x) = \bigcap_{\substack{x \in \mathcal{U} \\ \mathcal{U} \in \tau_f}} \mathcal{U}.$$

6.3.1 What kind of spaces are these?

Theorem: An induced topological space $\operatorname{Top}\left(X,\tau_f\right)$ is Hausdorff if and only if $f=id_X.$

6.3.2 Nice properties of the acyclic topologies

Theorem: Let $f:X\to X$ be acyclic and $g:X\to X$. If $au_f= au_g$ then f=g.

• Given an acyclic topology τ , we can recover the function f that induced it.

6.4 Categories of Induced Topological Spaces

- IndTop
 - objects: induced topological spaces
 - morphisms: continuous maps
- ATop
 - objects: acyclic topological spaces
 - a full subcategory of IndTop

6.5 Relationships between the categories

Theorem: Semiconjugacies are continuous with respect to the induced topologies.

(i.e. there is a functor
$$\kappa\left(\mathsf{Dyn}\left(X,f\right)\right)=\mathsf{Top}\left(X,\tau_{f}\right)$$
 and $\kappa\left(h\right)=h$)

Theorem:

- (a) If dynamical systems are conjugate then their induced topological spaces are homeomorphic.
- (b) Two acyclic dynamical systems are conjugate if and only if their induced topological spaces are homeomorphic.
- (c) In ADyn, h is a conjugacy if and only if it is a homeomorphism with respect to the induced topologies.

6.6 Applications to the Collatz Problem

- ullet Recall, the *Collatz graph* of Dyn (X, f) is
 - a directed graph $\left(V_f,E_f\right)$
 - $V_f = X$ is the set of vertices
 - $E_f = \{(x, f(x)) : x \in X\}$ is the set of directed edges
- Known: The Collatz conjecture is true if and only if the Collatz graphs of $T|\mathbb{Z}^+$ is weakly connected.

Theorem: Let $\operatorname{Dyn}(X,f)$ be a dynamical system. The Collatz graph of f is weakly connected if and only if the topological space $\operatorname{Top}(X,\tau_f)$ is connected.

Corollary: The Collatz Conjecture is true if and only if $\operatorname{Top}\left(\mathbb{Z}^+, \tau_{T|\mathbb{Z}^+}\right)$ is a connected topological space.

Corollary: If h is a semiconjugacy from $\mathrm{Dyn}\left(X,f\right)$ onto $\mathrm{Dyn}\left(\mathbb{Z}^+,T|\mathbb{Z}^+\right)$ and $\mathrm{Top}\left(X,\tau_f\right)$ is connected, then the Collatz conjecture is true.

Corollary: If h is a semiconjugacy from Dyn $\left(\mathbb{Z}^+,T|\mathbb{Z}^+\right)$ onto Dyn $\left(X,f\right)$ and Top $\left(X,\tau_f\right)$ is not connected, then the Collatz conjecture is false

Proof: Semiconjugacies are continuous!

7 M. Fraboni

7.1 Approach: attack via conjugacies

• Two extreme cases:

ullet Q: Can we find a conjugacy h and a map s so that

$$\begin{array}{ccc} \mathbb{Z}_2 & \xrightarrow{T} & \mathbb{Z}_2 \\ h \downarrow & & \downarrow h \\ \mathbb{Z}_2 & \xrightarrow{s} & \mathbb{Z}_2 \end{array}$$

commutes and both h and s are "not too hard".

7.2 Nice Conjugates and Linear Conjugacies

Definition:Let $a,b,c,d\in\mathbb{Z}_2,\,b$ even, $c\equiv d$ mod 2, and $f_{a,b,c,d}:\mathbb{Z}_2 o\mathbb{Z}_2$ by

$$f_{a,b,c,d}\left(x
ight) = \left\{ egin{array}{ll} rac{ax+b}{2} & ext{if } x ext{ is even} \\ rac{cx+d}{2} & ext{if } x ext{ is odd} \end{array}
ight.$$

Definition: Let

$$\mathcal{F} = \left\{ f_{a,b,c,d} : a,c,d \text{ are odd and } b \text{ is even}
ight\}.$$

Theorem (Fraboni)

- (a) $f_{a,b,c,d}$ is conjugate to T if and only if $f \in \mathcal{F}$.
- (b) Every $f \in \mathcal{F}$, is topologically conjugate to T.
- (c) s is conjugate to T via a linear conjugacy $h\left(x\right)=px+q$ if and only if $s=f_{1,q,3,p-q},$ with p odd and q even, or $s=f_{3,p-q,1,q}$ with p and q both odd.

These slides, papers, and fractal images are available at:

http://facweb.uofs.edu/~monks/talks.html